Adaptive tracking of discriminative frequency components in electroencephalograms for a robust brain-computer interface.

نویسندگان

  • Kavitha P Thomas
  • Cuntai Guan
  • Chiew Tong Lau
  • A P Vinod
  • Kai Keng Ang
چکیده

In an electroencephalogram (EEG)-based brain-computer interface (BCI), motor imagery has been successfully used as a communication strategy. Motor imagery causes detectable amplitude changes in certain frequency bands of EEGs, which are dubbed event-related desynchronization\synchronization. The frequency components that give effective discrimination between different types of motor imagery are subject specific and identification of these subject-specific discriminative frequency components (DFCs) is important for the accurate classification of motor imagery activities. In this paper, we propose a new method to estimate the DFC using the Fisher criterion and investigate the variability of these DFCs over multiple sessions of EEG recording. Observing the variability of DFC over sessions in the analysis, a new BCI approach called the Adaptively Weighted Spectral-Spatial Patterns (AWSSP) algorithm is proposed. AWSSP tracks the variation in DFC over time adaptively based on the deviation of discriminative weight values of frequency components. The classification performance of the proposed AWSSP is compared with a static BCI approach that employs fixed DFCs. In the offline and online experiments, AWSSP offers better classification performance than the static approach, emphasizing the significance of tracking the variability of DFCs in EEGs for developing robust motor imagery-based BCI systems. A study of the effect of feedback on the variation in DFCs is also performed in online experiments and it is found that the presence of visual feedback results in increased variation in DFCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive tracking of discriminative frequency components in electroencephalograms for a robust BCI

In an electroencephalogram (EEG)-based brain–computer interface (BCI), motor imagery has been successfully used as a communication strategy. Motor imagery causes detectable amplitude changes in certain frequency bands of EEGs, which are dubbed event-related desynchronization\synchronization. The frequency components that give effective discrimination between different types of motor imagery are...

متن کامل

A Novel Robust Adaptive Trajectory Tracking in Robot Manipulators

In this paper, a novel adaptive sliding mode control for rigid robot manipulators is proposed. In the proposed system, since there may exist explicit unknown parameters and perturbations, a Lyapunov based approach is presented to increase system robustness, even in presence of arbitrarily large (but not infinite) discontinuous perturbations. To control and track the robot, a continuous controll...

متن کامل

Adaptive Robust Control for Trajectory Tracking of Autonomous underwater Vehicles on Horizontal Plane

This manuscript addresses trajectory tracking problem of autonomous underwater vehicles (AUVs) on the horizontal plane. Adaptive sliding mode control is employed in order to achieve a robust behavior against some uncertainty and ocean current disturbances, assuming that disturbance and its derivative are bounded by unknown boundary levels. The proposed approach is based on a dual layer adaptive...

متن کامل

Enhancement of Robust Tracking Performance via Switching Supervisory Adaptive Control

When the process is highly uncertain, even linear minimum phase systems must sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while preserving the robust stability. In this paper, the problem of supervisory based switching Quantitative Feedback Theory (QFT) control is proposed for the control of highly uncertain plants. According to this strategy, the unce...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neural engineering

دوره 8 3  شماره 

صفحات  -

تاریخ انتشار 2011